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ABSTRACT

Many future applications will require guarantees on network performance, such as bounds on
throughput, delay, delay jitter, and reliability. To address this need, the Tenet Group at the Univer-
sity of California at Berkeley has designed, simulated, and implemented a suite of network proto-
cols to support real-time channels (network connections with mathematically provable
performance guarantees). The protocols, which constitute the prototype Tenet Real-Time Protocol
Suite (Suite 1), run on a packet-switching internetwork, and can coexist with the popular Internet
Suite. We rely on the use of connection-oriented communication, admission control, and channel
rate control.

This protocol suite is the first complete set of communication protocols that can transfer real-time
streams with guaranteed quality in packet-switching internetworks. Our initial development was
done on a local-area FDDI network. We have since installed our protocols on the experimental
wide-area internetwork of Project Sequoia 2000, where they have been running for several months.
We have performed a number of experiments and demonstrations in this environment using contin-
uous-media loads (particularly video). Our results show that our approach is both feasible and prac-
tical to build, and that it can successfully provide performance guarantees to real-time applications.
This paper describes the design and implementation of the suite, the experiments we performed,
and selected results, along with the lessons we learned.
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1   Introduction

This paper describes the Tenet Real-Time Protocol Suite, a set of network protocols providing guaranteed-perfor-
mance communication in heterogeneous packet-switching internetworks. This protocol suite is comprised of the first
complete set of protocols capable of transferring real-time streams in packet-switching internetworks with guaranteed
quality. The remainder of this section provides some background for our work. Section 2 outlines the overall architec-
ture of the Tenet Suite. Section 3 and Section 4 respectively present the design and implementation of the individual
protocols. In Section 5, we describe our experiments and measurements of the protocols. Section 6 provides a list of
the lessons that we learned in the process of designing, implementing, and experimenting with our protocols, as well
as some of the questions that remain unanswered. In Section 7, we summarize and describe future work.

1.1  A Brief History of the Tenet Suite

The Tenet Real-Time Protocol Suite was born out of pure curiosity. In 1987, one of the authors (Ferrari) was investi-
gating the operating system support necessary for multimedia applications, and was repeatedly led to making the
assumption that future networks would offer performance guarantees. While this assumption is true for circuit-
switching networks, he felt that future integrated-services networks would have to be based, for economical reasons,
on packet switching. This conjecture raised the question of whether a congestion-prone packet-switching network
could economically and efficiently offer guaranteed throughput, delay, delay jitter, and reliability bounds.

Ferrari set out to build a scheme (a set of algorithms) that would offer a network’s real-time clients the desired guar-
antees by providing real-time channels2. The basic ideas underlying the scheme were the real-time channel paradigm
itself, admission control, connection-oriented communication, channel rate control, and deadline-based scheduling
for real-time packets [1].

Later, he was joined by another of the authors (Verma), and, in 1989, the Tenet Group was founded with the primary
objective of studying real-time communication protocols. Shortly thereafter, the remaining authors joined the group.
The main activity of the group became, in Fall 1990 and Spring 1991, the design of a protocol suite embodying the
Tenet scheme. Several simplifications were made to facilitate the development of the first suite: the most important
simplification being the decision to provide only unicast real-time channels.

By Summer 1991, the suite had been specified in all its details, enriched with a distributed jitter control mechanism,
extended to internetworks and non-deadline-based scheduling disciplines, and extensively simulated. We subse-
quently implemented, debugged, and tested the protocols on a local-area FDDI network. We then installed the Tenet
protocols on the experimental wide-area network of Project Sequoia 2000 [2], where they have been running for sev-
eral months, and performed various experiments and demonstrations with continuous media loads (especially video).
The Tenet Suite is currently being ported to other testbeds, including XUNET 2 (a coast-to-coast ATM backbone con-
necting FDDI rings) and XUNET 3 West (a 1.5 kilometer serial HIPPI testbed); both XUNET 2 and XUNET 3 West
are part of BLANCA, one of the five testbeds in the Gigabit Testbed Initiative [3]. Finally, a second generation proto-
col suite (Suite 2 [4]) has been designed to support multi-party real-time communication (including multicast) and is
currently being implemented.

1.2  Related Work

The literature on real-time communication contains many proposals for satisfying the requirements of continuous-
media and other real-time applications. Most schemes, however, have not yet been used in designing real-time proto-
cols. At best, paper designs of such protocols have been provided. So far, there have been very few implementations
in this increasingly important area of networking research.

ST-II is a connection-oriented internetwork protocol [5] that has been implemented in several versions (e.g. [6], [7]).
Although the protocol specification allows implementors to include a FlowSpec that indicates resource requirements,
neither the contents of the FlowSpec nor algorithms for real-time admission control have been stipulated. To the best
of our knowledge, the implementation by Delgrossi et al. [7] is the only one providing mathematically provable guar-

2.  In this paper, we define a real-time channel to be a simplex connection that provides mathematically provable per-
formance guarantees on data delivery.
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antees. It uses admission control algorithms based on the Tenet scheme over Token Ring and FDDI networks [8].
However, neither the protocol specification nor this implementation provide a mechanism for performing and encap-
sulating reservations on multi-hop subnetworks (e.g. ATM networks).

Most recently, RSVP has been designed as a protocol for exchanging reservation messages [9]. It serves a role similar
to, and shares many features with, our channel setup protocol. The major difference is that RSVP reservations are
considered to be “soft state”, which must be periodically refreshed. This approach allows RSVP connections to adapt
to network load and outages, but penalizes connections during normal operation, because it introduces additional pro-
tocol overhead and allows disruptions in real-time service due to underlying route changes. As the implementation of
RSVP and associated admission control algorithms was in progress during this study, we could not compare its per-
formance and utility to those of the Tenet Suite.

Some real-time protocols have been implemented for specific sub-networks (e.g. [10], [11]). However, to the best of
our knowledge, these implementations are not applicable to heterogeneous internetworks. Standard signalling proto-
cols for ATM networks have well-defined traffic and performance specifications and are expected to be capable of
providing mathematically provable performance guarantees [12]. However, the corresponding admission control
algorithms have not yet been specified.

2  The Architecture of the Tenet Suite

The Tenet scheme for real-time communication is based on some principles that dictated, or suggested, some of the
architectural characteristics of the associated protocol suite [13]. First, all layers in a network’s architecture must be
able to provide performance guarantees in order for any guarantees to be available to the network’s clients. If a layer
is incapable of guaranteeing some performance bound, the layers above it cannot guarantee that bound either. For
example, no real-time service offering mathematically provable delay guarantees (including probabilistic ones) can
be built on top of the IEEE 802.3 (Ethernet) datalink layer protocol. Thus, a real-time communication service can
only be built if the datalink layer is able to provide guaranteed-performance services to the network layer (as is the
case of synchronous FDDI, ATM with a suitable signaling protocol and admission tests, 100VG-AnyLAN, and so
on). Performance bounds can then be offered to applications by implementing real-time protocols at the network and
transport layers. The Tenet Suite includes a network (or internetwork) layer protocol, the Real-Time Internetwork
Protocol (RTIP), and two transport layer protocols, the Real-Time Message Transport Protocol (RMTP) and the Con-
tinuous Media Transport Protocol (CMTP).

In the Tenet scheme, real-time channels are set up in an establishment phase that precedes data transfer. An establish-
ment message is issued from the source of the channel and travels to the destination, causing admission tests to be run
in each node along the path. All forward-trip tests must be successful and an acknowledgment must reach the source
for data transfer to begin. This separation between setup and transfer suggests that establishment (and teardown) be
done by a control protocol distinct from the data delivery stack. This solution is not universally preferred (as in the
cases of ST-II [5] and SRP [14]), but it has the advantage of allowing us to develop the control and data delivery pro-
tocols separately, in a more easily manageable, testable, maintainable, and portable fashion3. Control functions in the
Tenet Suite are provided by the Real-Time Channel Administration Protocol (RCAP) [15] [16].

An important principle of the Tenet approach is that all real-time applications have requirements that can be
expressed in terms of general performance or reliability bounds. As a consequence, there is no need for application-
specific protocols (such as a video protocol, an audio protocol, and so on) at the network or transport layer, as one
protocol at each of the layers will be sufficient. The Tenet Suite’s two transport protocols (RMTP and CMTP) differ
from each other in their interfaces and services, rather than in the types of information media they can or should carry.
CMTP is more oriented towards periodic traffic, and is time-driven instead of being based on the send-receive para-
digm of RMTP.

The Tenet Suite is expected to offer a real-time service in an integrated-services network. Hence, we designed the
Tenet protocols to coexist with the Internet protocols. Clients can send their non-real-time traffic using TCP or UDP

3.  It is possible to use the data delivery protocols without the control protocol, and to get guaranteed performance
from them whenever the load is known never to cause saturation. It is also possible to use the control protocols to
limit admission (i.e. to avoid congestion) with non-Tenet delivery protocols, as long as sources are rate controlled.
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and their real-time traffic using the Tenet protocols (after the appropriate connection setup). For this to be possible,
code had to be inserted between IP and the network drivers that would properly schedule departing packets (giving
priority to real-time packets), and demultiplex each arriving packet to the appropriate network protocol.

Finally, control must be exerted over data transfers to detect and recover from failures. Since this kind of control is
not directly related to the connection management performed by RCAP, another protocol, the Real-Time Control
Message Protocol (RTCMP), was introduced in the design of the suite, though it was not implemented due to our
scarcity of programmer-power.

The suite that resulted from these considerations is shown in Figure 1. At the time of this writing, CMTP has been
almost entirely implemented, but has not been tested, integrated with the other protocols, and experimented with. Its
design is described in [17].

3  Design of the Tenet Protocols

This section describes the design of the various protocols in the Tenet Suite. We describe the channel administration
protocol (RCAP), the network-layer protocol (RTIP) and one of the transport protocols (RMTP).

3.1  RCAP

Signalling and control services are provided in the Tenet Suite by the Real-Time Channel Administration Protocol
(RCAP). The main functions of RCAP are the setup and teardown of real-time channels; it also supports status inquir-
ies about established channels.

RCAP defines a set of messages to be passed between control entities along the path taken by a channel. Each mes-
sage has an implicit direction of travel with respect to a given real-time channel, either “upstream” (towards the
sender) or “downstream” (towards the receiver). RCAP assumes a reliable message delivery system; it does not pro-
vide explicitly for error recovery in the face of lost or corrupted control messages. The RCAP messages are shown in
Table 1.

Channel establishment is performed in a single round trip. In the forward pass, an establish_request message
is sent, hop by hop, from the source to the destination of the channel. Each RCAP entity maintains a routing table to
compute the next hop of channel establishment. At each node along the way where RTIP runs4, there is a local RCAP
entity, which performs admission control tests [1] [19]. If the channel can be supported at this node, the necessary
resources are tentatively allocated to the channel and the establish_request message (with local parameters
appended) is forwarded to the next node. If any node determines that it cannot support the channel’s performance
requirements, it sends an establish_denied message back to the source; this message causes all the channel’s
tentatively reserved resources to be released.

4.  RTIP and RCAP need not run within subnetworks that can themselves provide performance guarantees [18].

FIGURE 1. The Tenet Real-Time Protocol Suite. Also shown are the corresponding Internet protocols.
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Once the establish_request message reaches the destination, the destination application makes a final accept-
or-reject decision on the channel. If it accepts the channel, the reverse pass of establishment begins. An estab-
lish_accept message is sent hop by hop back from the destination to the source, backtracking along the path. At
each node on the path, the local RCAP entity may choose to relax the allocation of any resources that were over-
reserved on the forward pass. The final resource allocation is computed, the RTIP data delivery agent is informed of
the new channel, and the establish_accept message is passed to the next upstream node. When this message
reaches the source application, data transfer on the channel can begin.

The client, when invoking RCAP, must specify its performance requirements (the so-called “quality of service” or
QoS it needs) and a worst-case description of the traffic it will transmit over the new channel [1] [19]. The QoS
parameters of the RCAP interface are listed in Table 2, the traffic parameters in Table 3. The parameters in these
tables are part of the interface offered at the transport layer to the layer above. Note that the traffic parameters can also
be viewed as QoS parameters, since they define the lower bounds on instantaneous and average throughput the net-
work is being requested to provide. A positive answer returned by RCAP to the application may be interpreted as a
contract: the network guarantees the performance bounds requested by the application, provided that the application
obeys its traffic description at all times and that there are no failures in the network during the new channel’s lifetime
[20] [21]. This contract is valid until the channel is torn down.

At any time, the sending application can request the status of the channel at each node. This status includes the chan-
nel state (e.g. partially established, fully established), the address of each node on the path, and the local resource res-
ervations made. To gather this information, a status_request message is sent by the source of a channel. At
each node, the local RCAP entity appends a record with the channel status and forwards the message to the destina-
tion. The destination converts the type of the status_request message to status_report; this message is

Message Name Direction Description

establish_request Downstream Request to establish a new channel, causing
admission tests to be run at each hop and
resources to be tentatively allocated for the
channel.

establish_accept Upstream Indicates acceptance of a new channel, caus-
ing relaxation of resources and confirmation
of resource allocation.

establish_denied Upstream Indicates that a channel establishment request
was rejected, either inside the network or at
the destination. Causes resources allocated to
a channel to be released.

status_request Downstream Requests the status of a channel at each node.

status_report Upstream Returns data collected by a status_re-
quest message.

close_request_forward Downstream Message from source application to close an
existing channel.

close_request_reverse Upstream Message from destination application to close
an existing channel.

TABLE 1.  RCAP messages.

Symbol Description

Upper bound on end-to-end message delay

Lower bound on probability of timely delivery

Upper bound on delay jitter (optional)

Lower bound on probability of no loss due to buffer overflow

TABLE 2. QoS parameters.

Dmax

Zmin

Jmax

Wmin
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then transmitted hop by hop, unchanged, back to the sending application. Finally, either the source or the destination
of a given real-time channel can request that the channel be closed. The close_request_forward and clos-
e_request_reverse messages, identical except for the “direction” of the messages, are used for this purpose.
They are transmitted hop by hop along the path of a channel; each local RCAP entity releases all the resources allo-
cated to the channel.

RCAP is designed to control real-time channels in a heterogeneous internetwork. In such an environment, different
networks may have different scheduling policies or different resource models, which will require different admission
control tests. This heterogeneity requires different parameters to be passed between nodes during channel establish-
ment. However, it is desirable to hide these differences from the end-to-end channel establishment process. RCAP
takes a hierarchical view of channel establishment in which the links and nodes in a subnetwork are abstracted into a
single “logical link” in the internetwork. Such an approach allows RCAP to utilize the characteristics peculiar to an
individual network in order to provide guarantees, yet hide the underlying details of that network whenever possible
[15] [18].

3.2  RTIP

The Real-Time Internet Protocol (RTIP) is the network layer of the Tenet Suite. Its main function is to deliver packets
in such a way as to meet the real-time requirements of the corresponding channel.

3.2.1  RTIP Overview

In contrast to the IP datagram service, RTIP is connection-oriented. Data forwarding of RTIP is unreliable since pack-
ets may be corrupted or lost due to buffer overflow (if , see Table 2). RTIP also performs rate control, jitter

control, and scheduling based on the quality of service parameters of each connection. Since all packets on an RTIP
connection follow the same path, packets are delivered to the destination in the same order in which they were trans-
mitted by the source. Therefore, RTIP provides an unreliable, simplex, guaranteed-performance, in-order packet
delivery service.

The RTIP header, shown in Figure 2, is fixed-size and allows rapid processing at each node. In order to inter-operate
with IP, the first four bits of the RTIP header identify a packet as an RTIP packet. The other fields in the packet consist
of a 16-bit local identifier, a 16-bit packet length field, and a 16-bit packet sequence number. In addition, RTIP carries
a 32-bit timestamp, which indicates the time the packet was received by the RTIP module at the sending host. RTIP
provides a checksum for its header, but does not provide a checksum for user data, since it does not guarantee data
integrity.

Symbol Description

Minimum inter-message time

Minimum average inter-message time

Averaging interval

Maximum message size

TABLE 3. Traffic parameters.

0 3 7 15 23 31

RTIP Version unused Local ID

Packet Length Packet Sequence Number

Timestamp

reserved Header Checksum

FIGURE 2. RTIP packet header.

Xmin

Xave
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As an RTIP packet is received at a node, the only field in the packet that changes is the 16-bit Local ID; it is replaced
by the Local ID for the channel used by the next node along the path. Changes in the RTIP header checksum can be
pre-computed at connection establishment time to streamline packet processing.

The timestamp field in the RTIP header is used to maintain statistics about packet delays. The timestamp is initialized
by the sending host to its local time. RTIP can use this timestamp to collect statistics about packets on a connection by
measuring time relative to the timestamp of the first packet. Thus, meaningful statistics can be gathered even if the
clocks in the network are not synchronized, as long as the clock rates in the different machines are roughly the same.

3.2.2  RTIP Packet Processing

The RTIP entities in each node ensure that packets are delivered to meet their performance requirements. When a
connection is established by RCAP, RTIP is informed about the maximum delay  to be experienced by a packet at
the node. Assuming that packets obey the worst case traffic description specified at connection establishment time,
RTIP ensures that a packet arriving at a node at time  is transmitted from the node no later than . In addition to
these, RCAP also informs RTIP about the amount of buffer space to be allocated to the new connection, and about the
minimum and average inter-packet intervals and the averaging interval for the channel ( , , and )5.

In order to ensure a connection’s performance guarantees, each RTIP entity contains a rate control module and a
scheduling module. The rate control module monitors the traffic on each connection and shapes it according to the
traffic specification of that connection. In addition, the rate control module ensures that a connection’s delay jitter
requirements are satisfied. The scheduling module gives priority to packets with earlier delay bounds and ensures that
all deadlines are met.

The rate control module marks each packet as ineligible when it arrives. If a packet was expected no earlier than time
, but arrives at an earlier time, then the packet becomes eligible for transmission at time . A detailed explanation

of the rate control module and the method to compute eligibility times can be found in [21]. After it becomes eligible,
the packet is transferred to the RTIP scheduling module. The scheduling module is responsible for transmitting a
packet within the interval  after it receives the packet. Any service discipline that can provide such a guarantee can
be used with RTIP.

The RTIP entities also record statistics about packets arriving and departing on each connection.

3.3  RMTP

RMTP provides a message-based abstraction on top of RTIP. An instance of RMTP is needed at both endpoints of a
real-time channel. RMTP was designed as a light-weight transport protocol, and resides at the same layer in the pro-
tocol stack as TCP. Unlike TCP, the service provided by RMTP is unreliable. Acknowledgments and retransmissions,
the usual cure for loss and corruption, were deemed useless for those real-time applications with stringent delay
bounds and for most continuous-media applications; thus, we decided that reliability should be provided to those
applications that need and can afford it by a higher level protocol.

RMTP does not implement any kind of flow or congestion control scheme. It relies on RCAP to manage connections
so that there is no congestion, and on RTIP to provide rate-based flow control through the RTIP rate control module.
Furthermore, RMTP does not address the issue of packet reordering. Since all packets in a RTIP connection follow
the same route, RMTP expects packets to be delivered to it in order.

The main service provided by RTMP is fragmentation and reassembly. Thus, the sending RMTP module can accept
messages larger than the maximum RTIP packet size and break them into several RTIP packets. Each packet carries a
message sequence number (in the RMTP header) and a packet sequence number (in the RTIP header). The receiving

5.  In this discussion, we assume for simplicity that the traffic and QoS parameters of the network layer are so close to
those of the transport layer (see Tables 2 and 3) that we can consider them identical and use the same symbols for
both. This amounts to assuming (among other things) that no fragmentation of messages occurs in the transport layer.

d

T T d+

Xmin Xave I

Te Te

d
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RMTP module uses the message and packet sequence numbers to reassemble the received message. It also computes
the checksum of the message header to verify the correctness of the assembled message.

The RMTP header is shown in Figure 3. In addition to fragmentation and reassembly, the header supports options to
checksum user data and to collect end-to-end statistics about packet delays. The latter end-to-end statistics are com-
puted on the basis of the timestamp carried in the RMTP message header.

4  Implementation of the Tenet Protocols

This section describes the first implementation of each of the currently-operational protocols in the Tenet Suite
(RCAP, RTIP, and RMTP).

4.1  RCAP

The current RCAP implementation is divided into two parts: a library linked into each client application and a dae-
mon process that runs on each node, independent of the applications [16]. These components, and the relationships
between them, are shown in Figure 4. This implementation is extremely portable, compiling without modification on
nearly all UNIX-like operation systems.

4.1.1  The RCAP Library

The RCAP library implements the network control API seen by the application writer. It exports a set of procedures
that can be called within a user program to request various channel management functions. These procedures are
listed in Table 4. A C language header file provides the function prototypes and data structure definitions needed by

0 7 15 23 31

Timestamp

Message length Message Seq. # Flags

Checksum

FIGURE 3. RMTP message header.

FIGURE 4. The RCAP library and daemon, within a single network node. Arrows represent RCAP control
connections.
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applications. In all current implementations, the RCAP library is a standard UNIX library that is linked to the applica-
tion program.

We made a conscious decision to keep very little state information in the RCAP library. We assumed that since each
instance of the library resides in the address space of an application process, any such information is susceptible to
corruption from the user program. The RCAP library is essentially a set of specialized remote procedure call (RPC)
client stubs.

4.1.2  The RCAP Daemon

Information about the state of resources in the network is kept by an RCAP daemon process on each node. This pro-
cess manages the resources (such as link bandwidth) associated with the local node and responds to requests for chan-
nel establishment and teardown. It maintains the state of each RTIP channel throughout the channel’s lifetime.

Each daemon communicates with neighboring daemons and with local processes using control messages sent over
TCP/IP connections. These connections play a role similar to that of the dedicated signalling channels found in ATM
networks.

4.2  RMTP/RTIP

RMTP and RTIP have been implemented on various software and hardware platforms. One of the authors (Zhang)
wrote the original implementations of RMTP and RTIP for HP/UX on HP 9000/700 workstations and for Ultrix on
DECstation 5000 workstations. Tom Fisher and Hoofar Razavi ported these implementations to SunOS on SPARCs-
tations. Keith Sklower built versions for IRIX on SGI workstations and BSDI BSD/386 on 80486-based PCs. All the
software platforms are UNIX-like operating systems [22] with networking software derived from BSD UNIX [23]
[24].

The software structure of the RMTP and RTIP implementations is shown in Figure 5. While RCAP is implemented in
user space, RMTP and RTIP are implemented in the kernel and co-exist with TCP, UDP, and IP. A new type of socket,
with a protocol type of IPPROTO_RMTP, is used by applications for sending and receiving data. RCAP controls the
local establishment and teardown of channels through socket options applied to a special RTIP control socket.

Library Function Description

RcapEstablishRequest() Request to establish a new channel. Inputs are the traffic characteris-
tics, performance requirements, and addressing information. Output
is a channel identifier to be associated with a socket (if successful) or
an error code (if denied). Analogous to BSD connect().

RcapRegister() Receiver uses this call to indicate its willingness to accept new con-
nections. Analogous to BSD listen().

RcapReceiveRequest() Called by a receiving application to obtain an incoming channel
establishment request.

RcapEstablishReturn() Used by the receiver to indicate the final acceptance or rejection of a
channel. The combination of RcapReceiveRequest() and
RcapEstablishReturn() is similar to the BSD accept()
system call.

RcapUnregister() Used by the receiver to stop receiving new connections; does not
affect existing real-time channels.

RcapStatusRequest() Called by the source application to obtain the status of the channel at
each of the intermediate nodes.

RcapCloseRequest() Used by either sender or receiver to close a given real-time channel
and release its resources. Similar to BSD close().

TABLE 4. RCAP library exported procedures.
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Protocols previously implemented in BSD UNIX provide only best-effort service. In most implementations, there is a
buffer pool shared among all the connections, and the queueing discipline used is First-Come-First-Served. To pro-
vide performance guarantees, we implemented priority queueing mechanisms, as well as per-connection buffer man-
agement and rate control.

4.2.1  Buffer Management

Buffer management in BSD UNIX is based on a system-wide central pool of free buffers called mbufs. To implement
per-connection buffer management, where buffers are pre-allocated during channel establishment, we decided to use
a special-purpose mbuf designed for the Network File System (NFS), which has associated with it a function pointer
and a parameter. When the mbuf is released, the system does not return it to the central buffer pool, but calls the func-
tion with the parameter as an argument. For the purpose of RTIP buffer management, the function points to an RTIP
buffer management function, and the parameter holds the Local Channel Identifier of the connection. The buffer man-
agement function, when called, returns the private buffer associated with the mbuf to the connection’s buffer pool.

4.2.2  Service Disciplines

Some of the most important functions of RTIP are rate control, jitter control, and packet scheduling. These functions
can be realized using rate-based service disciplines [25]. We have implemented a number of service disciplines in the
prototype suite: Delay-Earliest-Due-Date [1], Jitter-Earliest-Due-Date [20] and Rate-Controlled Static Priority [26].
For the latter two, we implemented both rate-jitter controlling regulators and delay-jitter controlling regulators [25].
The implementation is modular, so that other types of regulators and schedulers can be easily implemented without
affecting the rest of the system.

The operation of a rate-controlled service discipline involves three tasks: calculating the eligibility time of each
packet, holding the packet if necessary, and enqueueing and dequeueing packets at the scheduler. The eligibility time
of each packet can be calculated using the formulae defined in [25] [27].

Packet holding is implemented differently in gateways (or routers) than in the hosts. In a host, where packets are sent
from some processes, holding packets can be implemented by putting the transmitting process into sleep. In a gate-
way, where packets are to be forwarded, there is no context or process associated with packets, and thus the sleeping
mechanism cannot be used. Instead, the UNIX timeout procedure is used to delay a packet that arrives at a gateway
earlier than its eligibility time.

Device Drivers

RTIP IP

TCP UDPRMTP

Socket Layer

RCAP

Application

User Space

Kernel Space

IPC Layer

Transport Layer

Network Layer

Network-Interface Layer

FIGURE 5. Software structure of RMTP/RTIP. The Internet protocols co-exist with the Tenet Suite.



11

Finally, the implementation of the enqueue and dequeue operations depends on the scheduling policy. All the mea-
surement experiments described in the next section were performed using the EDD scheduler, which serves packets
in order of their transmission deadlines.

5  Experiments with the Tenet Suite

The worst-case analysis used to derive the guarantees provided by the Tenet protocols is based on idealized models of
the network components. However, the actual timing behavior of a workstation is complicated by considerations of
process scheduling, interrupt handling, and CPU load. In addition, the calculations carried out by the admission con-
trol schemes depend on an accurate knowledge of the packet service times and transmission times, which depend on
the implementation of the protocols and must be measured. Therefore, experimental measurement of our protocols is
crucial, both to accurately calculate the parameters needed by the admission control tests and to verify the correct per-
formance of the resulting system.

5.1  Preliminary Measurement of RMTP/RTIP Performance

To perform some preliminary measurements of RMTP/RTIP, we set up the network shown in Figure 6. The three
workstations were connected by an FDDI ring, and routing tables were set up to form the logical topology shown in
Figure 7. While theorem and faith had one FDDI interface each, lemma had two FDDI interfaces to allow it to
act as a router in the logical topology. In some experiments, cross-traffic load was created by sending packets to a
non-existent machine called fake.

Because our goal was to measure achievable performance, we did not perform admission control or channel setup
through RCAP. Rather, we set the traffic descriptions and the local delay bounds at all the nodes individually. We also
made no attempt to use realistic load patterns; the load was generated by processes sending fixed-size packets in a
tight loop on the source machine. These experiments are described in more detail in [28].

theorem faithlemma

FDDI

FIGURE 6. Physical topology of the local testbed. theorem and lemma are DECstation 5000/125s and
faith is a DECstation 5000/240. Note that lemma has two FDDI interfaces. All machines run the Ultrix

4.2A operating system.

fake

theorem lemma

faith

FIGURE 7. Logical topology of the local testbed. For some experiments, additional network load was
created on lemma’s outgoing interface by sending additional network traffic to a non-existent machine

(fake), shown in the shaded box.
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5.1.1  Maximum Speed of RMTP/RTIP

Figure 8 compares the maximum achievable throughput of RMTP/RTIP with those of raw IP and UDP/IP. The exper-
iment was performed with one process on theorem sending 10,000 packets of the same size in a tight loop to
another process on faith, using lemma as a router. No additional load was applied to any of the machines. The
packet size was varied to obtain the curves shown. For RMTP/RTIP, the traffic parameters were set so that the rate
would be higher than the achievable output rate, in order to measure the maximum rate at which packets could be pro-
cessed without introducing rate control. From the throughput curve in Figure 8, we can see that the performance of
RMTP/RTIP is comparable to that of raw IP. This can be explained by considering the dominance of the data copying
cost on protocol performance. Due to the overhead of UDP checksums, the throughput of UDP/IP is lower than that
of raw IP or RMTP/RTIP.

A more detailed breakdown of the protocol processing costs is shown in Figure 9. These measurements were taken on
a DECstation 5000/125. The figure shows that the protocol processing cost (i.e. the difference between the “Socket”
curve and the “Socket + RMTP/RTIP” curve) is about 68 µs, and nearly independent of the packet size. The driver
software processing time is also fixed at 114 µs per packet. The socket layer processing and transmission contribu-
tions dominate and scale with the packet size, since they involve data copying.

5.1.2  Rate Control Behavior

The next set of measurements shows the effect of rate control on RMTP/RTIP behavior. These graphs were obtained
by sending data from a process on theorem in a tight loop to a receiving process on faith, which timestamped
arriving packets. Figure 10 shows the arriving sequence numbers against time for channels with different ( ,

) combinations.  was 1 second for all the channels. As can be seen in the figure, the rate control mechanism

forces adherence to the traffic characteristics specified in the contract, even though the user program is attempting to
send in a tight loop.

5.2  Measurement of the Sequoia 2000 Implementation

The Tenet Suite implementation on the Sequoia 2000 wide area network offered us a unique opportunity to measure
performance with realistic video-audio traffic and data loads. The measurements presented in this section were per-
formed on the network topology shown in Figure 11. Video streams were sent using the video conferencing tool vic,
developed by Steve McCanne, between machines at UC Berkeley and UC San Diego. Background data load was

FIGURE 8. Throughput of RMTP/RTIP, UDP/IP, and raw IP.

0

2

4

6

8

10

12

14

16

18

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
hr

ou
gh

pu
t (

M
bp

s)

Packet Size (Bytes)

RMTP/RTIP
Raw IP
UDP/IP

Xmin

Xave I



13

added by transferring data from the machine grayling to a machine at UCLA. This caused competition for trans-
mission resources on the T1 link between UC Berkeley and UC Santa Barbara.

vic is able to use either UDP/IP or RMTP/RTIP for data transmission. We compared the performances of a video
session using each of the protocols by measuring queuing delays and queue lengths at the bottleneck node, by plotting
the throughput and the frame inter-arrival time characteristics at the destination host, and by estimating the perceptual
quality of the received data for end users. The Sequoia experiments are described in greater detail in [29].

5.2.1  Single RMTP/RTIP and Single UDP/IP Streams

We examined the queueing behavior of a single vic session using RMTP/RTIP at the bottleneck gateway (sock).
Figure 12 shows the probability density function of queue lengths. The queue length is kept under control by the rate
control and resource reservation mechanisms so that, even during periods of high network load, the number of out-

FIGURE 9. Breakdown of processing times in kernel for RMTP/RTIP send.
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standing real-time packets to be served remains at or below five. Figure 13 shows the queue length as a function of
time during the period of highest queue buildup. In Figure 14, which shows the delays encountered by packets during
the experiment, we can see that the queueing delay at the bottleneck node is always below the guaranteed bound,
which in this case was 70 ms.

The performance seen by the application is shown in Figure 15, which plots the throughput (in kilobits per second,
averaged over 1-second intervals) over time. The received UDP/IP throughput is fairly smooth up to twenty seconds
into the plot, when load is introduced into the network. At this time, performance suffers due to queue buildups,
which cause delays and dropped packets. Even after the load is removed at thirty seconds, the transient emptying of
the network buffers causes throughput variations for a few more seconds. Because of the reserved resources, the
RMTP/RTIP throughput is unaffected by the increased network load.

5.2.2  Two RMTP/RTIP Streams

The previous experiment shows that the traffic on an RMTP/RTIP channel is protected from best-effort UDP/IP traf-
fic. The next experiment demonstrates the effectiveness of the protection of RMTP/RTIP channels from other real-
time (RMTP/RTIP) channels in the network. We set up two vic sessions from UC Berkeley to UC San Diego and
observed their queueing behavior and arrival time characteristics. During the experiment, additional load was intro-
duced from grayling as before. The throughput at the destination, shown in Figure 16, remains almost constant
even when a substantial amount of load is introduced into the network.

sorrento

grayling propaganda

faithsock

paola

venezia

redwood

breeze

wind

s2k-gw1

blizzard

UCB

UCSD
UCLA

SDSC

UCSB

FIGURE 11. The Sequoia 2000 network. Shaded boxes represent routers; all other boxes represent hosts.
Ovals represent FDDI local networks. Dashed lines stand for 1.5 Mbps T1 inter-campus links.
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5.2.3  Impact of Video Quality

Although the experiments in the previous sections clearly demonstrate that the protocols are providing their promised
service, it is also important that a human user appreciate the difference between the quality of video transported by
UDP/IP and that of video transported by RMTP/RTIP. The next experiment attempts to measure the impact of the
improved performance on the viewer of a video session. In this experiment, two vic video sessions were run simul-
taneously from two machines at UC San Diego to two machines at UC Berkeley: one using UDP/IP from venezia
to propaganda, the other using RMTP/RTIP from paola to faith. Both sessions had an average rate of 580
Kbps (roughly 10 frames per second). This rate was purposely chosen to allow both sessions to get equal performance
in the absence of additional load on the network.

Fifty attendees of the University of California’s 1994 Industrial Liaison Program Conference viewed the two video
streams and were asked to evaluate their quality under various levels of load in the network. The load was introduced
from a machine at UCLA using UDP packets to congest the link between UC Santa Barbara and UC Berkeley. The
viewers were asked to score the videos without prior knowledge of which protocol suites were in use.

FIGURE 12. Probability density function of queue lengths, for a single RMTP/RTIP channel under
congestion. The mean queue length is 0.964.
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With a 99% confidence interval, the mean opinion score of the RMTP/RTIP video session did not change during the
experiment. However, with the same confidence interval, the mean opinion score of the UDP/IP session dropped by
54% when the same load was introduced into the network. This result validates our claim that the use of the Tenet
protocols prevents visible degradation of video quality when congestion occurs in the network.

5.2.4  Connection Setup Latency

The final experiment was conducted to investigate the time to perform admission control tests in the connection
establishment phase. One concern expressed about resource reservation and admission control is that the time to per-
form establishment tests might be a significant cost in connection establishment. To address this issue, we measured
the establishment process to find the round-trip delay, the per-hop latencies, and the portion ascribable to admission
control tests.

FIGURE 14. Packet delays over times, for a single RMTP/RTIP channel under congestion. The mean delay
is 7.37 ms.
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FIGURE 15. Throughputs of RMTP/RTIP and UDP/IP streams under load.
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The path used in the previous experiments, from faith at UC Berkeley to paola at UC San Diego, involves six
machines, three FDDI rings, and two T1 links. The time to perform the end-to-end round trip establishment is about
90 ms. This latency does not change appreciably with the number of RTIP connections established for up to 30 con-
nections. The main factor which determines the latency is the path length. For example, for a shorter path from
faith to redwood at the San Diego Supercomputer Center, the end-to-end setup latency is about 70 ms.

The breakdown of latencies into per-machine and per-link costs for a typical run (from faith to redwood) is
shown in Table 5. This path involves four machines, one FDDI ring and two T1 links. The node latencies are shown
separately for the forward and reverse directions, while the link latencies are averages of the forward and reverse
latencies.

Node 0 (a DECstation 5000/125) was slower than the others (DECstation 5000/240s), which explains the higher node
latency. We found that the times to perform the admission control tests themselves were always less than 0.5 ms per
node. Thus, the establishment latency is dominated by propagation delays and message transport overheads.

6  Lessons

Many lessons were learned from designing, implementing, and experimenting with the Tenet Real-Time Protocol
Suite. None of these conclusions could have been reached with the same level of certainty, or at all, if we had just
published a few papers on our admission control algorithms and moved on to something else. In this section, we have
highlighted what we feel are the most important lessons we have learned and, based on our experience, some of the
most important questions still to be answered.

Proof of concept: The most important result we obtained was a demonstration that guaranteed performance data
delivery can be provided in a packet-switching environment using the Tenet approach. Significantly, our experiments

Node Forward (ms) Reverse (ms) Link (ms)

0 3.906 3.907 3.674

1 2.056 1.832 11.9

2 1.637 1.825 9.779

3 1.853 1.958 —

TABLE 5. Node and Link latencies for channel establishment

FIGURE 16. Throughputs of co-existing RMTP/RTIP channels.
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indicate that it is possible to build signalling protocols that establish real-time channels rapidly enough to satisfy most
clients, and to build real-time data delivery protocols that attain the speeds achievable by UDP/IP.

Admission tests must be improved: Even though we did not run experiments intended to investigate this aspect, one
can show that the admission control tests we used in the Tenet Suite were too pessimistic. Overly-pessimistic algo-
rithms are undesirable because they reduce the real-time capacity of the network6. We now have more optimistic tests
for both deterministic [30] and statistical [31] guarantees, and plan to experiment with them in Tenet Suite 2.

Multi-party support is needed: The absence of multi-party support has been a real problem when trying to run even
small multimedia conferences using Suite 1. This problem has two aspects: without multi-party support, connection
setup for an N-way conference is cumbersome and amounts of resources reserved are high. Again, this problem is
being solved in Suite 2 by providing multicast channels, resource sharing between related channels (of the same con-
ference) [32], and higher-level abstractions to simplify connection setup for multi-party communication [4].

A variety of establishment paradigms is useful: Experience with applications and conversations with other research-
ers have convinced us that some applications are best served by source-initiated connection establishment (e.g. pre-
planned conferences in which most participants are known ahead of time), some by receiver-initiated establishment
(e.g. seminar distribution)7, and some by duplex establishment (e.g. videophone). Although RCAP was designed and
implemented for source-initiated establishment, the Tenet establishment procedure could be extended trivially to
these other cases as well.

Separation of control and delivery protocols facilitates development: Among the lessons we learned specifically from
the design of Suite 1, perhaps the most important is the advantages of separating RCAP from RMTP/RTIP. This sep-
aration, and the decision to implement RCAP completely in user space, facilitated the debugging and porting of the
implementations. We also discovered that it is sometimes useful to install and run RMTP/RTIP without RCAP and
vice versa.

Many additional lessons were learned during the implementation: One lesson was that the use of an existing, reliable
transport protocol (TCP) for delivering RCAP messages greatly simplified and speeded implementation, though per-
haps another mechanism for intra-machine communication would have been more efficient. Another lesson was that
the use of blocking functions in the API made the interface unfriendly to both application programmers and users8.
An asynchronous approach is being used in the implementation of Suite 2. Thirdly, in debugging these protocols, we
found that keeping the protocol entities in a consistent state across the network was difficult. Therefore, we had to
develop mechanisms to ensure consistency and/or facilitate its restoration. More generally, we learned that basic net-
work management tools are necessary for debugging and deploying real-time protocols.

Remaining questions: A number of questions still need to be answered, and we plan to use this suite and its successor
(Suite 2) to shed some light on them. Some are small and detailed (e.g. are the representations for time and probabil-
ity values chosen for RCAP suitable?). Others are more far-reaching (e.g. what is an appropriate traffic representa-
tion, neither so rich as to be too difficult to use, nor so simple as to fail to accurately model resource requirements?).
Other questions are fundamental to real-time networking research: Is distributed delay jitter control really useful? Are
statistical guarantees really usable? Are deterministic guarantees really needed? Unfortunately, answering the more
fundamental of these questions requires real clients with real applications; therefore, we will have to wait until real-
time protocols (ours and others) are deployed in a production environment.

7  Conclusions and Future Work

While we made a number of simplifying shortcuts in both the design and the implementation of the Tenet Suite, we
feel that the project proved the correctness, feasibility and practicality of the Tenet approach to real-time communica-

6.  Near-full utilization of the network can still be obtained by the addition of non-real-time traffic.

7.  By receiver-initiated establishment, we mean only that the direction of establishment is from the receiver to the
source: the traffic requirements still are specified by the source.

8.  Blocking procedure calls cause the user interface of an application to “freeze up” until the procedure call returns,
unless a multi-threaded design is used to avoid this problem.
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tion. The result is the first suite of communication protocols capable of transferring real-time streams on packet-
switching internetworks with guaranteed performance.

Much work has already been done to extend the Tenet approach and protocol suite. The next generation scheme and
suite (Scheme 2 and Suite 2, respectively) have been designed, as mentioned above, and implementation is underway.
Suite 2 supports multi-party communication, including routing and establishment of multicast connections and
resource sharing [4]. A key difference between the resource sharing in Scheme 2 and other proposals is that Scheme 2
uses simple, application-specific hints to share resources among related connections without violating the mathemati-
cal guarantees of the Tenet approach. Analysis and simulation results indicate that resource sharing can greatly
improve resource utilization for most multi-party conferences [32]. Suite 2 also supports partitioning of network
resources into independent “virtual networks” and supports advance reservation of resources for future connections
[33].

In addition, several improvements have been made to the unicast scheme and suite. Besides the already mentioned
enhancements to the admission control tests, mechanisms for Dynamic Connection Management (DCM) have been
developed to support dynamic adjustment of traffic and performance parameters and/or routes of existing connec-
tions. These mechanisms have been experimented with in the context of Suite 1 [34]. DCM has also been used and
augmented to support fault tolerance and fault recovery [35]. Future work includes implementation and experimenta-
tion with these new algorithms and mechanisms.
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